Adult mice cloned from migrating primordial germ cells.

نویسندگان

  • Yukiko Yamazaki
  • Eleanor W Low
  • Yusuke Marikawa
  • Kazuhiro Iwahashi
  • Marisa S Bartolomei
  • John R McCarrey
  • Ryuzo Yanagimachi
چکیده

We previously reported that the genomes of gonadal germ cells at 11.5-19.5 days postcoitum (dpc) are incompetent to support full-term development of cloned mouse embryos. In this study, we performed nuclear transfer using primordial germ cells (PGCs) from earlier stages at 8.5-10.5 dpc. When PGC nuclei at 8.5, 9.5, and 10.5 dpc were transferred into enucleated oocytes, seven cloned embryos developed into full-term offspring. Of these, five, all derived from 8.5- or 9.5-dpc PGCs, developed into healthy adults with normal fertility. Of the remaining two offspring derived from 10.5-dpc PGCs, one died shortly after birth, and the other showed slight growth retardation but subsequently developed into a fertile adult. We examined allele-specific methylation at the imprinted H19 and Snrpn loci in 9.5- to 11.5-dpc PGCs. Although the beginning of methylation erasure was evident on the H19 paternal allele at 9.5 dpc, most PGCs did not demonstrate significant erasure of paternal allele-specific methylation until 10.5 dpc. Maternal allele-specific methylation was largely erased from Snrpn by 10.5 dpc. By 11.5 dpc, the majority of PGCs showed nearly complete or complete erasure of allele-specific methylation in both H19 and Snrpn. These results demonstrate that at least some genomic imprints remain largely intact in 8.5- to 9.5-dpc PGCs and then undergo erasure at approximately 10.5 dpc as the PGCs enter the genital ridges. Thus, migrating PGCs at 8.5-9.5 dpc can be successfully used as donors for nuclear transfer, whereas gonadal PGCs at 11.5 dpc and later are incompetent to support full-term development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review of Differentiation and Proliferation of Primordial Germ Cells in Culture

Primordial germ cells (PGCs) are highly specialized cell population that arises from the epiblast in vivo. There are three critical steps in the life cycle of these cells: 1-Specification 2-migration and proliferation 3-prenatal and postnatal sex specific development. Specification of germ cells in epiblast occurs due to signals secreted from extraembryonic tissues. Primordial germ cells are re...

متن کامل

Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning.

Germ cells undergo epigenetic modifications as they develop, which suggests that they may be ideal donors for nuclear transfer (cloning). In this study, nuclei from confirmed embryonic germ cells were used as donors to determine whether they are competent for cloning and at which stage they are most competent. Embryos cloned from migrating 10.5-days-postcoitum (dpc) primordial germ cells (PGCs)...

متن کامل

Stage-specific mice ovarian somatic cell is involved in primordial folliculogenesis.

Although recent studies have shown that female germ cells can be produced from stem-cell lines in mice, whether these germ cells can interact with ovarian somatic cells (OSCs) to form primordial follicles (PFs) is still unclear. Here, we found after the PF pool is established, Irx3 and FoxL2 which were extensively expressed in the OSCs of the perinatal mouse decreased. Additionally, during prim...

متن کامل

In Vitro Production of Germ Cells from Stem Cells: Hypes and Hopes

Several lines of evidence have reported that mouse ESCs can successfully differentiate into primordial germ cells (PGC) as well as into mature male and female gametes. Human ESCs and adult stem cells (ASCs) can also differentiate into PGCs. Differentiation of ESCs into germ cells of various stages seems to be a spontaneous and quick process, probably due to the nature of ESCs themselves and the...

متن کامل

Conditional knockdown of Nanog induces apoptotic cell death in mouse migrating primordial germ cells.

The pluripotency factor Nanog is expressed in peri-implantation embryos and primordial germ cells (PGCs). Nanog-deficient mouse embryos die soon after implantation. To explore the function of Nanog in germ cells, Nanog RNA was conditionally knocked down in vivo by shRNA. Nanog shRNA transgenic (NRi-Tg) mice were generated through the formation of germline chimeras with NRi-Tg embryonic stem cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 32  شماره 

صفحات  -

تاریخ انتشار 2005